Finding Normal Proportions Sections 3.6, 3.7, 3.8

Lecture 10

Robb T. Koether

Hampden-Sydney College

Fri, Jan 29, 2016

Outline

- The Standard Normal Distribution
- Cumulative Proportions
- Using the Standard Normal Table
- Using the TI-83
- 5 Finding a Value from a Proportion
- 6 Assignment

• We denote by $N(\mu, \sigma)$ the normal distribution with mean μ and standard deviation σ .

- We denote by $N(\mu, \sigma)$ the normal distribution with mean μ and standard deviation σ .
- The number of heads out of 10,000 tosses is N(5000, 50).

- We denote by $N(\mu, \sigma)$ the normal distribution with mean μ and standard deviation σ .
- The number of heads out of 10,000 tosses is N(5000, 50).
- The number of sixes out of 720 rolls is N(120, 10).

- We denote by $N(\mu, \sigma)$ the normal distribution with mean μ and standard deviation σ .
- The number of heads out of 10,000 tosses is N(5000, 50).
- The number of sixes out of 720 rolls is N(120, 10).
- The IQ scores are *N*(100, 15).

Outline

- The Standard Normal Distribution
- Cumulative Proportions
- Using the Standard Normal Table
- Using the TI-83
- Finding a Value from a Proportion
- 6 Assignment

The Standard Normal Distribution

Definition (The Standard Normal Distribution)

The standard normal distribution is the normal distribution with $\mu = 0$ and $\sigma = 1$.

• Sketch the standard normal density curve.

The Standard Normal Distribution

The Standard Normal Distribution

If x is a variable with a normal distribution that has mean μ and standard deviation σ , then the variable z, defined by

$$z = \frac{x - \mu}{\sigma}$$

has the standard normal distribution.

Outline

- The Standard Normal Distribution
- 2 Cumulative Proportions
- Using the Standard Normal Table
- Using the TI-83
- Finding a Value from a Proportion
- 6 Assignment

Cumulative Proportions

Definition (Cumulative Proportion)

The cumulative proportion of a value x in a distribution is the proportion of the distribution that is less than or equal to x.

• The proportion is the same as the area under the curve (because the total area is 1).

Outline

- The Standard Normal Distribution
- Cumulative Proportions
- Using the Standard Normal Table
- Using the TI-83
- Finding a Value from a Proportion
- 6 Assignment

Using the Standard Normal Table

- The Standard Normal Table is a table of cumulative normal proportions.
- It is found on pages 698 and 699.
- The values in the left margin are the first two significant digits of x.
- The values across the top are the third significant digit of *x*.
- The entry in that row and column is the cumulative proportion of x (the area to the left of x).

Using the Standard Normal Table

Z	0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00
-3.40	0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.30	0.0003	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005
-3.20	0.0005	0.0005	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0007	0.0007
-3.10 -3.00	0.0007	0.0007	0.0008	0.0008	0.0008	0.0008	0.0009	0.0009	0.0009	0.0010
-2.90	0.0014	0.0014	0.0015	0.0015	0.0016	0.0016	0.0017	0.0018	0.0018	0.0019
-2.80 -2.70	0.0019	0.0020	0.0021	0.0021	0.0022	0.0023	0.0023	0.0024	0.0025	0.0026
-2.60	0.0026	0.0027	0.0028	0.0029	0.0030	0.0031	0.0032	0.0033	0.0034	0.0035
-2.50	0.0048	0.0049	0.0051	0.0052	0.0054	0.0055	0.0057	0.0059	0.0060	0.0062
-2.40	0.0064	0.0066	0.0068	0.0069	0.0071	0.0073	0.0075	0.0078	0.0080	0.0082
-2.30	0.0084	0.0087	0.0089	0.0003	0.0094	0.0076	0.0073	0.0070	0.0104	0.0002
-2.20	0.0110	0.0113	0.0116	0.0119	0.0122	0.0125	0.0129	0.0132	0.0136	0.0139
-2.10	0.0143	0.0146	0.0150	0.0154	0.0158	0.0162	0.0166	0.0170	0.0174	0.0179
-2.00	0.0183	0.0188	0.0192	0.0197	0.0202	0.0207	0.0212	0.0217	0.0222	0.0228
-1.90	0.0233	0.0239	0.0244	0.0250	0.0256	0.0262	0.0268	0.0274	0.0281	0.0287
-1.80	0.0294	0.0301	0.0307	0.0314	0.0322	0.0329	0.0336	0.0344	0.0351	0.0359
-1.70	0.0367	0.0375	0.0384	0.0392	0.0401	0.0409	0.0418	0.0427	0.0436	0.0446
-1.60	0.0455	0.0465	0.0475	0.0485	0.0495	0.0505	0.0516	0.0526	0.0537	0.0548
-1.50	0.0559	0.0571	0.0582	0.0594	0.0606	0.0618	0.0630	0.0643	0.0655	0.0668
-1.40	0.0681	0.0694	0.0708	0.0721	0.0735	0.0749	0.0764	0.0778	0.0793	0.0808
-1.30	0.0823	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.0968
-1.20 -1.10	0.0985	0.1003 0.1190	0.1020 0.1210	0.1038 0.1230	0.1056 0.1251	0.1075 0.1271	0.1093 0.1292	0.1112 0.1314	0.1131 0.1335	0.1151 0.1357
-1.00	0.1170	0.1190	0.1210	0.1230	0.1251	0.1271	0.1292	0.1514	0.1562	0.1587
-0.90	0.1611	0.1635	0.1660	0.1685	0.1711	0.1736	0.1762	0.1788	0.1814	0.1841
-0.80	0.1867	0.1894	0.1000	0.1003	0.1777	0.2005	0.2033	0.2061	0.1014	0.1041
-0.70	0.2148	0.2177	0.2206	0.2236	0.2266	0.2296	0.2327	0.2358	0.2389	0.2420
-0.60	0.2451	0.2483	0.2514	0.2546	0.2578	0.2611	0.2643	0.2676	0.2709	0.2743
-0.50	0.2776	0.2810	0.2843	0.2877	0.2912	0.2946	0.2981	0.3015	0.3050	0.3085
-0.40	0.3121	0.3156	0.3192	0.3228	0.3264	0.3300	0.3336	0.3372	0.3409	0.3446
-0.30	0.3483	0.3520	0.3557	0.3594	0.3632	0.3669	0.3707	0.3745	0.3783	0.3821
-0.20	0.3859	0.3897	0.3936	0.3974	0.4013	0.4052	0.4090	0.4129	0.4168	0.4207
-0.10	0.4247	0.4286	0.4325	0.4364	0.4404	0.4443	0.4483	0.4522	0.4562	0.4602
-0.00	0.4641	0.4681	0.4721	0.4761	0.4801	0.4840	0.4880	0.4920	0.4960	0.5000

Using the Standard Normal Table

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.10	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.20	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.30	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.40	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.50	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.60	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.70	0.7580	0.7611 0.7910	0.7642	0.7673 0.7967	O.7704 0.7995	0.7734	O.7764 0.8051	O.7794 0.8078	0.7823	0.7852
0.90	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8315	0.8078	0.8365	0.8133
1.00	0.8413	0.8438 0.8665	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599 0.8810	0.8621
1.20	0.8849	0.8869	0.8888	0.8907	0.8729	0.8944	0.8962	0.8980	0.8997	0.9015
1.30	0.9032	0.9049	0.9066	0.9082	0.9099	0.0344	0.0302	0.0300	0.9162	0.9177
1.40	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.50	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.60	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.80	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.90	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.00	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.10	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.20	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.30	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.40	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.50	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.60	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.70	0.9965	0.9966	0.9967 0.9976	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.90	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
3.00	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.10	0.9990	0.9991	0.9991	0.9900	0.9992	0.9989	0.9969	0.9989	0.9990	0.9930
3.20	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.30	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.40	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get fewer than 5,100 heads?
- What fraction of the time will we get more than 4,950 heads?
- What fraction of the time will we get between 4,900 and 5,050 heads?

Example (Coin Tossing)

 If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get fewer than 5,100 heads?

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get fewer than 5,100 heads?
- We know (were told) that $\mu = 5000$ and that $\sigma = 50$.

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get fewer than 5,100 heads?
- We know (were told) that $\mu = 5000$ and that $\sigma = 50$.
- Find the z-score of 5100:

$$z$$
-score = $\frac{5100 - 5000}{50}$
= $\frac{100}{50}$
= 2.00.

Example (Coin Tossing)

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get fewer than 5,100 heads?
- We know (were told) that $\mu = 5000$ and that $\sigma = 50$.
- Find the z-score of 5100:

z-score =
$$\frac{5100 - 5000}{50}$$

= $\frac{100}{50}$
= 2.00.

• The table entry for 2.00 is 0.9772.

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get fewer than 5,100 heads?
- We know (were told) that $\mu = 5000$ and that $\sigma = 50$.
- Find the z-score of 5100:

z-score =
$$\frac{5100 - 5000}{50}$$

= $\frac{100}{50}$
= 2.00.

- The table entry for 2.00 is 0.9772.
- We expect to get fewer than 5,100 heads about 97.72% of the time.

Example (Coin Tossing)

• If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get more than 4,950 heads?

Example (Coin Tossing)

• If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get more than 4,950 heads?

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get more than 4,950 heads?
- Find the z-score of 4950:

z-score =
$$\frac{4950 - 5000}{50}$$

= $\frac{-50}{50}$
= -1.00.

Example (Coin Tossing)

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get more than 4,950 heads?
- Find the z-score of 4950:

z-score =
$$\frac{4950 - 5000}{50}$$

= $\frac{-50}{50}$
= -1.00.

• The table entry for -1.00 is 0.1587.

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get more than 4,950 heads?
- Find the z-score of 4950:

z-score =
$$\frac{4950 - 5000}{50}$$

= $\frac{-50}{50}$
= -1.00.

- The table entry for -1.00 is 0.1587.
- We expect to get fewer than 4,950 heads about 15.87% of the time.

Example (Coin Tossing)

 If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get between 4,900 and 5,050 heads?

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get between 4,900 and 5,050 heads?
- Find the *z*-scores of 4900 and 5050:

z-score of
$$4000 = \frac{4900 - 5000}{50} = -2.00$$

z-score of $5500 = \frac{5050 - 5000}{50} = 1.00$.

Example (Coin Tossing)

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get between 4,900 and 5,050 heads?
- Find the z-scores of 4900 and 5050:

z-score of
$$4000 = \frac{4900 - 5000}{50} = -2.00$$

z-score of $5500 = \frac{5050 - 5000}{50} = 1.00$.

• The table entry for -2.00 is 0.0228 and the table entry for 1.00 is 0.8413.

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get between 4,900 and 5,050 heads?
- Find the z-scores of 4900 and 5050:

z-score of
$$4000 = \frac{4900 - 5000}{50} = -2.00$$

z-score of $5500 = \frac{5050 - 5000}{50} = 1.00$.

- The table entry for -2.00 is 0.0228 and the table entry for 1.00 is 0.8413.
- The difference is 0.8413 0.0228 = 0.8185.

- If we toss a coin 10,000 times and do that repeatedly, what fraction of the time will we get between 4,900 and 5,050 heads?
- Find the z-scores of 4900 and 5050:

z-score of
$$4000 = \frac{4900 - 5000}{50} = -2.00$$

z-score of $5500 = \frac{5050 - 5000}{50} = 1.00$.

- The table entry for -2.00 is 0.0228 and the table entry for 1.00 is 0.8413.
- The difference is 0.8413 0.0228 = 0.8185.
- We expect to get between 4,900 and 5,050 heads about 81.85% of the time.

Outline

- The Standard Normal Distribution
- Cumulative Proportions
- Using the Standard Normal Table
- Using the TI-83
- Finding a Value from a Proportion
- 6 Assignment

TI-83 - Standard Normal Areas

TI-83 Standard Normal Areas

- Press 2nd DISTR.
- Select normalcdf (Item #2).
- Enter the lower and upper bounds of the interval.
 - If the interval is infinite to the left, enter -E99 as the lower bound.
 - If the interval is infinite to the right, enter E99 as the upper bound.
- Press ENTER. The area appears in the display.

Other Normal Curves

- If we are working with a different normal distribution, say N(5000, 50), then how can we find areas under the curve?
- Use the same procedure as before, except enter the mean and standard deviation as the 3rd and 4th parameters of the normalcdf function.
- For example, the area between 4900 and 5050 is given by normalcdf (4900, 5050, 5000, 50).

Outline

- The Standard Normal Distribution
- Cumulative Proportions
- Using the Standard Normal Table
- Using the TI-83
- 5 Finding a Value from a Proportion
- 6 Assignment

Finding a Value from a Proportion

- Very often we know the proportion and we must find the value of x that gives that proportion.
- Typically, the proportion is in the upper tail or the lower tail.

Lower Tail

- If the proportion is in the lower tail, then we simply use the table "backwards."
 - Find the proportion in the body of the table.
 - Read across to the row heading and up to the column heading to get the value of x.

Lower Tail

- If the proportion is in the lower tail, then we simply use the table "backwards."
 - Find the proportion in the body of the table.
 - Read across to the row heading and up to the column heading to get the value of x.
- If the proportion is in the upper tail, then
 - First subtract it from 1 to get the area of the lower part.
 - Then proceed exactly as for a lower tail.

Example

Example (Bottom 20%)

- In the distribution N(5000, 50), what value marks the 20th percentile (the lower 20%)?
- What value marks the top 10%?
- Where are the first and third quartiles?
- What two values mark the middle 10%?

TI-83 - Standard Normal Percentiles

TI-83 Standard Normal Percentiles

- Press 2nd DISTR.
- Select invnorm (Item #3).
- Enter the lower area, as a decimal.
- If the distribution is not standard normal, then also enter
 - The mean
 - The standard deviation
- Press ENTER. The percentile appears in the display.

Outline

- The Standard Normal Distribution
- Cumulative Proportions
- Using the Standard Normal Table
- Using the TI-83
- Finding a Value from a Proportion
- 6 Assignment

Assignment

Assignment

- Read Sections 3.6 3.8.
- Apply Your Knowledge: 8, 10, 11, 12.
- Exercises: 28, 30, 31, 34, 35, 37, 40, 43.